
Zuul Interoperability



What’s Zuul?

I Project gating CI system
I Focus on Git and code review workflows
I Cross-project, multi-tenant, multi-source
I Open source/design/development/community
I Host it yourself or use a hosted service
I Represented by the OSF



A Brief History

I 2012: Speculative scheduler for Jenkins (1.0)
I 2013: Mult-master Jenkins scale out (2.0)
I 2016: Experimental Ansible launcher (2.5)
I 2018: Interoperable rearchitecture (3.0)

https://opensource.com/article/20/2/zuul

https://opensource.com/article/20/2/zuul


Interoperability

I Ansible as a job description language
I Shares job definitions between repos
I Central "standard library" of building blocks
I Supports multiple source connections
I Runs jobs on many environments and multi-node
I Cross-repo/cross-source dependencies



Ansible Executor

I Shouldn’t invent a domain-specific language
I Avoid "not implemented here" temptation
I Something people were already using
I Made for orchestrating across multiple hosts
I Extensible with Python modules
I Can still easily run arbitrary shell scripts



Job Sharing

I Workflow/triggers not tied to individual jobs
I Reference jobs and roles from any project
I Vary jobs or inherit from them
I Designed for secure reuse between separate

I Branches
I Projects
I Tenants
I Connections



Standard Library

I Reusable building blocks (playbooks, roles)
I Generic jobs for a variety of languages
I Thoroughly documented and self-testing
I Can consume directly through Git connection
I Can consume from a locally-hosted fork
I Advisory testing performed by other sites

https://opendev.org/zuul/zuul-jobs

https://opendev.org/zuul/zuul-jobs


Multi-Connection

I Connect to many code review systems at once
I Bridges different review and hosting software

I Gerrit
I GitHub
I Pagure
I Git (static hosting)
I GitLab (experimental)
I BitBucket (in progress)



Job Environments

I OpenStack (VMs, containers, bare metal)
I Amazon (EC2, EKS)
I Azure (in progress)
I Google Cloud (GCE, GKE)
I Kubernetes pods
I OpenShift
I Static servers and appliances
I Multi-node (homogeneous or heterogeneous)



Dependencies

I Implicit in dependent pipeline manager order
I Explicit in commit message footer
I Works between projects (repositories)
I Works across separate source connections
I Enforces merge sequencing
I Provides prepared Git repositories



Thanks and Links

Visit https://zuul-ci.org/ for more information

http://fungi.yuggoth.org/presentations/2020-cdf

Copyright 2020 Jeremy Stanley <fungi@yuggoth.org>

This work is licensed under a Creative Commons Attribution 3.0
Unported License.
http://creativecommons.org/licenses/by/3.0/legalcode

https://zuul-ci.org/
http://fungi.yuggoth.org/presentations/2020-cdf
mailto:fungi@yuggoth.org
http://creativecommons.org/licenses/by/3.0/legalcode

